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ABSTRACT: One of the most fundamental steps in risk assessment is to
quantify the exposure−response relationship for the material/chemical of
interest. This work develops a new statistical method, referred to as SKQ
(stochastic kriging with qualitative factors), to synergistically model exposure−
response data, which often arise from multiple sources (e.g., laboratories, animal
providers, and shapes of nanomaterials) in toxicology studies. Compared to the
existing methods, SKQ has several distinct features. First, SKQ integrates data
across multiple sources and allows for the derivation of more accurate information
from limited data. Second, SKQ is highly flexible and able to model practically any
continuous response surfaces (e.g., dose−time−response surface). Third, SKQ is
able to accommodate variance heterogeneity across experimental conditions and
to provide valid statistical inference (i.e., quantify uncertainties of the model
estimates). Through empirical studies, we have demonstrated SKQ’s ability to
efficiently model exposure−response surfaces by pooling information across
multiple data sources. SKQ fits into the mosaic of efficient decision-making methods for assessing the risk of a tremendously large
variety of nanomaterials and helps to alleviate safety concerns regarding the enormous amount of new nanomaterials.
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■ INTRODUCTION

Nanomaterials (NM) are finding wide applications in areas such
as the energy,1,2 environment,3−5 and biomedical engineering
sectors.6,7 The rapid introduction of engineered NM raises
imperative concerns on the potential hazard/risk of NM. In
comparison to traditional materials and chemicals, it is particularly
challenging to fully assess the risks associated with all NM, mainly
due to the tremendously large variety of NM. With limited
resources for conducting expensive and time-consuming biological
experiments, there is an urgent need to develop efficient decision-
making methods for NM risk assessment. Primarily motivated by
such a need, this paper proposes a new statistical method, which is
able to derive more accurate hazard-related information by
synergistically modeling multi-source toxicology data. By making
more efficient use of given data, the proposed method will help to
reduce the experimental cost/time in toxicology studies and
contribute to the use of NM in a safe and sustainable manner.
One of the most fundamental steps in assessing the risk of a

nanomaterial (or any substance) is to understand and properly
characterize its exposure−response relationship.8,9 A exposure−
response relationship describes how the adverse bioactivity effects
(the responses) are functionally related to the condition of exposure
to a substance.10With a well established exposure−response profile,

prediction of hazard can be made for a given level of exposure; such
a profile also allows for the estimation of exposures at responses of
different severities (e.g., the benchmark dose11,12), which assists the
risk assessor to make judgments to protect a population from
increasingly severe effects.
To quantify exposure−response relationships, biological

experiments need to be performed under different exposure
conditions to observe the corresponding bioactivity responses of
animals. Herein, the exposure condition is typically specified
through the settings of two quantitative factors: dose level of the
substance of interest and time factor involved. Depending on the
time scope of the toxicology study, the time factor could be
exposure time for long-term studies or post-exposure time for
acute studies. On the basis of the experimental data collected,
statistical methods are then used to fit exposure−response
models quantifying the relationships of interest.
However, it remains a challenge to achieve the exposure−

response models of the highest quality from given toxicology
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data. Existing statistical models13−15 are not adequate to model
typical exposure−response data due to the following three major
reasons. (i) First, the exposure−response data for a nanomaterial
often arise from multiple sources. More specifically, the data
available for modeling typically consists of a number of subsets
obtained from different sources such as laboratories,16 animal
providers,17 and shapes of nanomaterials.18 The observed
response of animals depends not only on the exposure condition
but also on these source factors. The subset of data collected
from a different source may well reflect a different exposure−
response profile. (ii) Second, the exposure−response relation-
ship may well be nonlinear.19−23 For two-dimensional dose−
response curves, a range of nonlinear regression models (e.g.,
power and logistic models) has been developed13 to model the
sole source data, as opposed to the multi-source data described
above. However, the three-dimensional dose−time−response
surface is far from being adequately investigated at least partly
because of the complex nature of the target surface. (iii) Third,
typically the available/affordable toxicology data are not only
relatively scarce and highly variable but are also subject to
variance heterogeneity.24 The response variability changes with
the experimental setup, which is specified by the exposure
condition as well as the data source factors. The variance
heterogeneity poses significant difficulty in making statistical
inferences for the estimated exposure−response model (i.e.,
quantifying the uncertainty of the model estimates).
To address these challenges, a new stochastic kriging model is

developed in this work, which will be referred to as SKQ
(stochastic kriging with qualitative factors). SKQ particularly
aims at pooling information from all sources of data to obtain the
highest-quality models. It is highly flexible and able to accurately
approximate practically any continuous response surfaces,15,25,26

without requiring a preassumed functional form (e.g., logistic
model) as traditional nonlinear regression does.27 SKQ is able to
accommodate variance heterogeneity across exposure conditions
as well as different data sources and is able to provide valid
statistical inference.
In the literature, the majority of exposure−response modeling

methods are restricted to single-source data.28−30 These
methods separately model each source of data and make no
effort at all to pool information across different sources. The
drawback of such no-pooling methods is that for each data
source, a large sample size is required to obtain an adequate
exposure−response profile. The mixed effects modeling (MEM)
method14,29,31 represents the closest existing approach for
information pooling. (A brief review of MEM is given in Review
of Mixed Effects Model, Supporting Information.) However,
MEM is parametric regression-based and is subject to restrictive
assumptions such as the identification of a specific functional form
for regression and the prior-assumed common variance structure for
random errors across different data sources. Thus, MEM falls short
of addressing challenges (ii) and (iii) stated earlier in this section,
whereas SKQ is a more general modeling method.
The remainder of this paper is organized as follows. The

Statement of the Research Problem section describes in precise
terms the research problem of modeling multi-source exposure−
response data in toxicology studies. The new modeling method
SKQ is detailed in the Stochastic Kriging with Qualitative Factors
(SKQ) section. In the Empirical Studies section, through
simulation-based empirical studies, SKQ’s modeling efficiency
via information pooling is demonstrated, and the advantages of
SKQ over two existing methods are also illustrated.

■ STATEMENT OF THE RESEARCH PROBLEM
In exposure−response studies for a substance, biological
experiments are performed in a range of experimental conditions.
An experimental condition is defined by the combination of a
number of factors, which can be divided into two categories,
quantitative and qualitative factors.
Quantitative factors typically include but are not limited to the

toxicant dosage administered to an animal and post-exposure
time (or the exposure duration of the toxicant). In this paper, the
vector x is used to represent the quantitative factors considered.
Qualitative factors mainly include various source factors such

as the laboratory where the experiments were conducted, provider
for the experimental animals, and shape of the nanomaterials. The
qualitative factors are denoted by the vector z.
The experimental condition is specified in terms of the factor

vector w = (xT,zT)T. The random response observed from an
animal subject at a factor setting w can be generally written as

ε ε= + = +w w w Y w w( ) E[ ( )] ( ) ( ) ( ) (1)

where Y(w) = E[ (w)] represents the true expected response,
and ε(w) is the random zero-mean error that accounts for the
variations across animal subjects.
An example of such exposure−response studies is given later in

the subsection Case 1: Modeling Multi-Source Dose-Time-
Response Data, where the toxicity of TiO2 nanoparticles (NPs) is
investigated. In that case, the vector x = (x1,x2)

T includes two
quantitative factors: dosage of NPs x1 and post-exposure time x2.
There is one qualitative factor z, which has two category levels for
the shape of TiO2 NPs: short and long nanobelts.
A setting of the qualitative factors z corresponds to a

combination category, say cq, and defines a subpopulation or a
data source. The total of Q subpopulations specified by the
settings of z are denoted as {cq; q = 1, 2,...,Q}. In the case of TiO2
NPs, there areQ = 2 subpopulations: c1 for short TiO2 nanobelts
and c2 for long TiO2 nanobelts. The population is the union of all
the subpopulations and is considered as the TiO2 NPs of both
shapes in the aforementioned example. For a given subpopula-
tion cq, the bioactivity response obtained from an animal subject
is expected to be Y(w|cq) = Y(x,cq), a continuous function of the
quantitative factors x, while subjecting to the cross-subject
random error ε(w|cq) = ε(x,cq).
The biological data collected for the toxicity study of a

substance are represented as

= =i I j nw w w{( , ( )); 1,2,..., ; 1,2,..., ( )}i j i i (2)

where wi denotes the ith design point (factor setting at which
experiments are performed) of a total of I distinct design points,

j (wi) is the observed response from the jth replication atwi, and
n(wi) is the number of replications at wi.
On the basis of the sample data (eq 2), the objective of

statistical modeling is to quantify the dependence of the response
upon the quantitative and qualitative factors and to provide valid
statistical inference regarding the population being investigated
(e.g., TiO2 NPs of both shapes). SKQ aims at achieving this
objective with high data efficiency and model generality.

■ STOCHASTIC KRIGING WITH QUALITATIVE
FACTORS (SKQ)

In this section, the SKQ modeling and inference methods are
detailed. As an extension from the standard stochastic kriging
(SK), which considers quantitative factors only, SKQmodels the
variability arising from quantitative as well as qualitative factors.
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For the readers’ convenience, a review of SK is given in Review of
Standard Stochastic Kriging, Supporting Information.
Compared to existing kriging-based methods,15,32,33 SKQ is

the first one that models all of the stochastic elements from the
extrinsic variability caused by both quantitative and qualitative
factors and intrinsic variability across random replications, as will
become clearer in the remainder of this section.
SKQ models the dependence of continuous responses upon

the factors w = (xT,zT)T, with x = (x1, x2,..,xd)
T ∈ d and z =

(z1, z2,..., zL)
T including L qualitative factors. Each qualitative

factor z has a number of category levels.
The response at a setting w for the jth replication (animal

subject) is modeled by SKQ as

ε β ε= + = + +w Y w w f w M w w( ) ( ) ( ) ( ) ( ) ( )j j j
T

(3)

The expectation Y(w) is decomposed into the sum of two parts:
f(w)Tβ and M(w). Here, f(w) is a vector of known functions of
w, and β is a vector of unknown parameters of compatible
dimension. Because it has been widely accepted that f(w)Tβ = β0
(that is, just a constant term) suffices for most applications,15 this
work adopts f(w)Tβ = β0 unless stated otherwise. The term M(w)
represents amean-zero stationaryGaussian process, which intends to
capture the extrinsic variability, i.e., the variability due to the factorsw.
The randomness of ε(w) is referred to as intrinsic variability.

The random noise ε1(w), ε2(w),... at a factor settingw is assumed
to havemean zero and be independent and identically distributed
(i.i.d.) across replications. The error variance Var[ε(w)] is
allowed to be dependent on w.
Given the sample data (eq 2), the sample average of the

responses at wi across the n(wi) replications follows as

∑

∑β ε

̅ =

= + +

=

=

n

n

w
w

w

M w
w

w

( )
1

( )
( )

( )
1

( )
( )

i
i j

n

j i

i
i j

n

j i

w

w

1

( )

0
1

( )

i

i

Denote

̅ = ̅ ̅ ̅w w w( ( ), ( ), ..., ( ))I1 2
T

(4)

as the I × 1 vector of sample average responses at the I distinct
design points.
Similarly, the vector of sample average errors is denoted as

ε ε ε ε̅ = ̅ ̅ ̅w w w( ( ), ( ),..., ( ))I1 2
T

(5)

with ε(̅wi) = n(wi)
−1 ∑j = 1

n(wi) εj(wi),i = 1,2,...,I.
Extrinsic Variance Structure.The modeling of the extrinsic

variability is performed following the framework proposed by Qian
et al.32 For the factor settings w = (x,z) and w′ = (x′,z′), the
covariance of the stationary Gaussian processM(·) takes the form

∏

δ

δ τ

′ = × ′

= × × ′
=

′ K

M w M w M w M w

x x

Cov[ ( ), ( )] Corr[ ( ), ( )]

[ ] ( , )
L

z z

2

2

1
,

( )

(6)

with δ2 being the variance of the Gaussian process. The correlation
Corr[M(w),M(w′)] is decomposed as the product of two

parts: τ∏ = ′
L

z z1 ,
( ) and K(x,x′). To enable the estimation of a SKQ

model, specific functional forms need to be assumed for both parts.
In eq 6, K(x,x′) represents the correlation across the

quantitative settings for a given combination category of the

qualitative factors z and models the variability due to
quantitative factors. Hence, K(x,x′) plays the same role in
SKQ as in SK, and the discussions regarding K(x,x′) in Review
of Standard Stochastic Kriging, Supporting Information, can e
inherited here. For specific functional structures of K(x,x′), a
range of choices are available in the literature (e.g., Santner
et el.,34 Qian et al.32), and one of the most popular correlation
functions in practice is the exponential correlation function

∑ θ′ = − | − ′|
=

K x xx x( , ) exp{ }
h

d

h h h
p

1 (7)

In eq 7, θ = (θ1, θ2,...,θd) is a vector of unknown parameters. It
is required that θh > 0 (h = 1,2,...,d), and θ determines the
roughness of the response surface for a given combination
category of z. The parameter p ∈ (0,2] also needs to be
estimated unless p is pre-specified as 2, which corresponds to
the widely used quadratic correlation function.35

The term τ∏ = ′
L

z z1 ,
( ) in eq 6 is devoted to the correlations

across different levels of qualitative factors. As noted in Qian
et al.,32 τ ′z z,

( ) measures the correlation (similarity) at any two
settings w and w′ that differ only on the values of the
th qualitative factor. For τ ′z z,

( ) , a range of functional forms have
been proposed in Qian et al.32 and Zhou et al.36 Below, two
specific correlation functions are given as examples.
• Isotropic (or exchangeable) correlation functions (EC):

τ φ= − ≠ ′ =′ I z z Lexp{ ( )}; 1,2,...,z z,
( ) ( )

(8)

In eq 8, Φ = {ϕ( ); = 1,2,...,L} represents the set of unknown
parameters to be estimated, and I[A] is an indicator function that
takes 1 if event A is true and 0 otherwise. Clearly, EC assumes
that all the category levels of the th qualitative factor are of
isotropic nature; that is, a given , τ ′z z,

( ) is a constant as long
as ≠ ′z z .
• Multiplicative correlation functions (MC):

τ φ φ= − + ≠ ′′ ′ I z zexp{ ( ) ( )}z z z z,
( ) ( ) ( )

(9)

The unknown parameter setΦ includes the following components:

φ = L; 1,2,...,c
( )

c denotes any one of all the possible category levels for the th

qualitative factor.

For a given , MC allows the correlation τ ′z z,
( ) to be dependent on

the category levels involved (i.e., z and ′z ).
Given the data = =i I j nw w w{( , ( )); 1,2,..., ; 1,2,..., ( )}i j i i

collected at I distinct design points, the I × I variance−covariance
matrix ∑M is constructed as

In eq 10, R(θ,Φ) denotes the correlation matrix; each
component of the matrix represents a correlation, which can
be decomposed into two parts as explained above and which is a
function of θ and Φ. For an arbitrary setting w0, the I × 1 vector
∑M(w0,·) is defined as
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δ θ δ∑ · = Φ =
⋮

⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟
w v w

M w M w

M w M w

M w M w

( , ) ( , , )

Corr[ ( ), ( )]

Corr[ ( ), ( )]

Corr[ ( ), ( )]I

M 0
2

0
2

0 1

0 2

0

(11)

where v(w0,θ,Φ) denotes the correlation vector with each
component being a correlation function dependent on w0, and
the unknown parameters θ and Φ.
Intrinsic Variance Structure. The intrinsic variance of the

random response at w is denoted as Var[ε(w)], which is
dependent on the setting w. Let ∑ε be the I × I variance−
covariance matrix of vector ε,̅ which is defined in eq 5. Under the
i.i.d. assumption for random errors,∑ε is a I × I diagonal matrix

ε ε

ε

∑ =ε n n

n

w w w w

w w

diag{Var[ ( )]/ ( ),Var[ ( )]/ ( ),

... ,Var[ ( )]/ ( )}I I

1 1 2 2

(12)

Estimation and Inference by SKQ (Stochastic Kriging
with Qualitative Factors). The SKQ-based estimation and
inference requires the following assumption, which parallels
Assumption 1 for SK (see Review of Standard Stochastic Kriging,
Supporting Information).
Assumption 1: The random field M is a stationary Gaussian

random field; and ε1(w),ε2(w),... are i.i.d. N(0,Var[ε(w)]),
independent of εj(w′) for all j andw≠w′, and independent ofM.
Given a data set = =i I j nw w w{( , ( )); 1,2,..., ; 1,2,..., ( )}i j i i

and under Assumption 1, Y̅ = (Y̅(w1), Y̅(w2),...,Y̅(wI))
T as defined

in eq 4 follows a multivariate normal distribution with constant
mean vector (β0,β0,...,β0)

T and variance−covariance matrix

δ θ δ θ∑ Φ = ∑ + ∑ = Φ + ∑ε εR( , , ) ( , )M
2 2

(13)

Recall that ∑M and ∑ε are defined in eqs 10 and 12,
respectively. Thus, the log-likelihood function of Y̅ in terms of the
unknown parameters (β0,δ

2,θ,Φ) can be written as

β δ θ π δ θ

β

δ θ β

Φ = − − | Φ

+ ∑ | − ̅ −

× Φ + ∑ ̅ −

ε

ε

Τ

−

R

1

R 1

ln ( , , , ) ln[(2 ) ]
1
2

ln[ ( , )

]
1
2

( )

[ ( , ) ] ( )

I

I

I

0
2 /2 2

0

2 1
0

(14)

where 1I is a (I × 1) vector of ones. Following the framework of
SK estimation (see Supporting Information), the procedure is
developed as follows to obtain the SKQ parameter estimates for
(β0,δ

2,θ,Φ) that maximize eq 14.
1. Obtain the estimated ∑ε

where

1. Replace∑ε by ∑̂ε and maximize the log-likelihood function
(eq 14) with respect to (w.r.t.) (β0,δ

2,θ,Φ). Specifically, two steps
can be taken to solve the maximum likelihood problem. (i) Given
δ2, θ, and Φ, the maximum likelihood estimate (MLE) of β0 is

β δ θ δ θ

δ θ

̂ Φ = Φ + ∑̂

× Φ + ∑̂ ̅
ε

ε

Τ − −

Τ −

1 R 1

1 R

( , , ) ( [ ( , ) ] )

[ ( , ) ]

I I

I

0
2 2 1 1

2 1

(ii) Substituting β̂0(δ
2,θ,Φ) into eq 14, the problem reduces to

maximizing

w.r.t. (δ2,θ,Φ), which can be solved by a nonlinear optimization
algorithm such as the Matlab fmincon function
1. For an arbitrary setting w0, estimate the expected response

Y(w0) by

β θ δ θ β̂ = ̂ + ̂ Φ̂ ̂ ̂ Φ̂ + ∑̂ ̅ − ̂
ε

Τ −Y w v w R 1( ) ( , , ) [ ( , ) ] ( )I0 0 0
2 1

0
(18)

where (β̂0,δ
2̂,θ̂,Φ̂) are the maximum likelihood estimates ob-

tained from the previous step. Recall that v(w0,θ̂,Φ̂) is defined in
eq 11. Following the proof scheme of Ankenman et al.,15 it can be
shown that eq 18 is the best linear unbiased estimator for Y(w0).
The mean squared error (MSE) is obtained as

where η = 1 − 1I
T[δ2̂ R(θ̂,Φ̂) + ∑̂ε]

−1v(x0,θ̂,Φ̂)δ2̂.
The two-sided 100(1− α)% confidence interval for Y(w0) can

be constructed as

where z1−α/2 is the 100(1 − α/2)th percentile of a standard
normal distribution.

Inverse Estimation and Inference. In this section, we
consider in particular the SKQ-based modeling/inference for
two-dimensional dose−response data and the subsequent
derivation of the BMD (benchmark dose) for the substance of
interest. The BMD is the dose that corresponds to a specified
level of adverse response called the benchmark response (BMR),
plays an important role in setting safety standard, and is of
particular interest in toxicology studies.
Following the notations adopted earlier, multi-source dose−

response data are collected at factor setting w = (x,z), which
includes one quantitative factor x representing the dose level and
a number of qualitative factors zwith all the possible combination
categories being {cq;q = 1,2···,Q}. The expected dose−response
curve is denoted as Y(x,cq) for a subpopulation specified by cq.
The BMR can be defined as a relative change in the mean

response from the control mean or as an absolute level.13,37

Either definition can be selected based on the knowledge
available regarding the substance’s adverse effects, and the BMR
defined in one way can be easily converted to that defined in the
other. For illustration, we let the BMR be a preselected absolute
response in this work, and the BMD for a subpopulation cq is
written as

= −c cYBMD( ) (BMR, )q q
1

(21)

Here, Y−1 represents the functional dependence of BMD(cq)
upon BMR, assuming that the inverse mapping exists.28

The collection of dose−response curves {Y(x,cq);q = 1,2,...,Q}
are modeled by SKQ. To perform the inverse calculation as given
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in eq 21, numerical interpolation needs to be employed based on
the fitted SKQmodel. In this work, the cubic spline interpolation
recommended by Hastie et al.38 is used to perform the inverse
computation for BMD estimation.
Denote as the estimated BMD from the SKQ model

for the subpopulation cq. The uncertainty of , represented
by Var[ ], directly relates to the safety standard of the
substance being investigated. To estimate Var[ ], numerical
methods have to be resorted to again. The bootstrap resampling
method developed by Kirk et al.39 is adapted to quantify the
uncertainty of { ;q = 1,2,...,Q} based on the SKQ modeling
of given data = =i I j nw w w{( , ( )); 1,2,..., ; 1,2,..., ( )}i j i i ,

and the adapted bootstrapping algorithm is described in Figure 1.

This algorithm falls into the category of parametric bootstrap
resampling method. There are also nonparametric and semi-
parametric counterparts,40−42 and kriging-based bootstrapping
inference remains a research topic under investigation.
Empirical studies suggest thatB = 999 usually suffice as a bootstrap

sample size for the construction of confidence intervals (CIs). With
the B-fitted SKQmodels {Ŷ̂b

*(w);b = 1,2,...,B}, B BMD estimates can
be obtained for a specified BMR and a given subpopulation cq

On the basis of bootstrapping estimates in eq 22, the
nonparametric method suggested by Davison and Hinkley43

can be easily employed to estimate the 100αth (α ∈ (0,1))
percentile of . In this context, the percentile estimate is
referred to as BMDL, which serves as the lower bound of the one-
sided 100α%CI for the BMD. For the subpopulation cq, the one-
sided CI of is written as [ ,∞). It is worth noting
that the percentile method, which is employed here for the
estimation of the lower bound BMDL, is one of the various
existing methods for estimating the CI boundaries from a given
bootstrap sample, and we refer the interested readers to Efron
et al.44 for more information.

■ EMPIRICAL STUDIES
Empirical case studies were designed and performed
to demonstrate SKQ’s advantages to model multi-source

exposure−response data over the existing approach, SK (see
Review of Standard Stochastic Kriging, Supporting Information)
and MEM (see Review of Mixed Effects Model, Supporting
Information) method.
Case 1: A multi-source dose−time−response case is

developed to show SKQ’s modeling efficiency by pooling
information across multiple data sources. The SKQ results are
compared to those provided by SK, which models each source of
data separately with no information pooling.
Case 2: A multi-source dose−response case is developed to

show that compared to MEM (existing information-pooling
method) SKQ is a more general method, which is free of the
restrictive assumptions stipulated by MEM.
The empirical studies are based on simulation experiments,

i.e., sampling through computer experiments whose outputs
mimic real experiment data. Simulation, rather than real
experiments, is employed for the following reasons. First, in
only a simulation-based study, the true expected response
surfaces (i.e., the simulation models) are available to evaluate the
modeling results. Second, the resulting estimated model is a
random outcome, which depends on the random sample data;
hence, a modeling method needs to be evaluated in a statistical
manner based on the outcomes of applying it on a large number
of randomly sampled data sets, which is impossible with real
experiments. These advantages of simulation will become clear in
the case studies below.

Case 1: Modeling Multi-Source Dose−Time−Response
Data. This case is constructed based on the dose−time−
response study of TiO2 nanoparticles (NPs) performed by
Porter et al.45 There are two quantitative factors, x = (x1,x2), with
x1 ∈ [0,15] μg representing the TiO2 dosage, and x2 ∈ [1,112]
days representing the post-exposure time. There is one
qualitative factor for the shape of NPs, which is denoted as z.
The variable z has two category levels {c1,c2}: c1 denotes short
TiO2 nanobelts and c2 long TiO2 nanobelts. Each category
corresponds to a different subpopulation/data source. The
vector of all the factors is given as w = (x,z). The response of
interest is BAL (bronchoalveolar lavage) PMNs measured in the
units of 103/mouse.

Simulation Model. The simulation model, which is used to
generate simulation data that mimic real experimental data, is
described as follows. The true expected responses for the two
subpopulations (short and long nanobelts) are represented as
{Y(x,c1),Y(x,c2)}, with specific expressions given by Models
S25 and S26 in True Expected Exposure−Response Model for
Case 1, Supporting Information. Both Models S25 and S26 take
the form of a single hidden layer feed-forward neural network
and are estimated from real biological data.46 The true dose−
time−response surfaces are plotted in Figure 2.
The true variance models used in the simulation are given as

ε =c cx Y xVar[ ( , )] (0.2 ( , ) )1 1
0.7 2

(23)

ε = ×c cx Y xVar[ ( , )] (0.3 exp( ( , ) 0.005))2 2
2

(24)

For a subpopulation cq (q = 1,2) and at an exposure level x0, a
random response y0 is simulated as

ε ε= + × =y c c qY x x( , ) Var[ ( , )] ; 1,2q q0 0 0 (25)

where ϵ is a random error provided by a standard normal random
generator.47

Case 1 is designed to compare the modeling efficiency of SKQ
and SK. MEM has not been applied to this case for the following

Figure 1. Bootstrap resampling algorithm for uncertainty quantification
of BMD estimates.
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two reasons. First, MEM relies on a common nonlinear
functional form adequate to model the underlying dose−time−
response surface for each subpopulation (data source) cq, which
is very difficult, if not impossible, to identify for the three-
dimensional complex surfaces (Figure 2) in this case. Second, the
variance structures of eqs 23 and 24 are different across the two
categories, which violates the assumption of common variance
structure required by MEM. For details regarding the related
MEM assumptions, please refer to Review of Mixed Effects
Model of the Supporting Information.
Sampling via Simulation.Two types of data sets are obtained

via simulation: an estimation data set (EDS) for model
estimation/inference and a validation data set (VDS) that is
used to evaluate the quality of the model estimated from an EDS.
For Case 1, an EDS includes a total of 32 distinct design

points: 16 points for subpopulation c1 (short nanobelts) depicted
as stars in Figure 3a and 16 points for subpopulation c2 (long
nanobelts) depicted as stars in Figure 3b. At each design point,
Model S25 is used to generate eight i.i.d. random responses; that
is, eight replications are assigned to each distinct design point.
The VDS includes a dense grid of 16,912 check points, which

are depicted as dots in Figure 3. The collection of all the check
points is denoted as , with = ∪c c1 2

, c1
denotes the

collection of dots in Figure 3a, and c2
is the collection of dots in

Figure 3b. Further, cq
(q = 1,2) is divided into a number of

subsets: = ∪ ∪ ··· ∪c c c c,1 ,2 ,15q q q q
, where c k,q

represents
the collection of check points within the subregion specified by
the dose range [k − 1,k). The subregions are shown in Figure 3a
and b as alternating white and gray rectangles. At each check
point, the true expected response Y(·) is available (Figure 2) to
evaluate the models fitted from the EDS.

Applying the Modeling Methods. On an EDS generated
following the design as given in Figure 3, both SK and SKQ were
applied to model the target response surfaces.
SK has no information pooling ability and fits a separate SK

model for each subpopulation solely based on the corresponding
subset of data. When applying SK, the exponential correlation
function (eq 7) is adopted to capture the extrinsic variability for
both subpopulations. Two separate SK models are estimated
from the short-nanobelt and long-nanobelt data subsets,
respectively. At an arbitrary setting w = (x,cq), formulas S13
and S14 were used, based on the fitted SK model associated with
cq, to obtain, respectively, the point estimate and CI of the
expected response Y(w).
To apply SKQ, the correlation functions for the extrinsic

variability (eq 6) are specified as follows: the exponential

Figure 2. True exposure−response surfaces for Case 1.

Figure 3. Design points in the EDS (estimation data set) and check points in the VDS (validation data set).
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correlation function (eq 7) is adopted for K(x,x′), and the EC
(isotropic) correlation function (eq 8) is used for τ ′z z,

( ) . Fitted
from an EDS consisting of two sources of data subsets, the
resulting SKQ model can be used for estimation and inference.
At an arbitrary factor setting w = (x,cq), formula (eq 18) provides
the point estimate for Y(w), and eq 20 gives the CI for Y(w).
Pooling Effects of SKQ. SKQ’s strength lies in its ability to

pool information across multiple subpopulations/data sources.
The estimation quality w.r.t. a subpopulation can be substantially
improved because SKQ allows for the borrowing of information
(or data) from all the other subpopulations. To demonstrate
SKQ’s estimation efficiency, herein we compare the SK and SKQ
results in terms of the quality of their point estimates for Y(·).
The estimated root mean squared error (ERMSE) defined as

follows is used to evaluate the goodness of point estimate Ŷ(·).
Recall that c k,q

is the collection of the checkpoints for

subpopulation cq included in the rectangle specified by dose
range [k − 1,k), as shown in Figure 3. We define

∑=
#

̂ −

= =

∈

q k

w wERMSE( )
1

[ ]
(Y( ) Y( )) ;

1, 2; 1,2,...,15

c k
c k w

,
,

2
q

q cq k,

(26)

where #[ ]c k,q
represents the total number of check points in the

set c k,q
. Clearly, eq 26 measures the average deviation of Ŷ(·)

from the true value Y(·) at the check points in c k,q
.

Applying a modeling method (SK or SKQ) on one EDS,
denoted as EDS(r) (r = 1,2,...,R), is considered as one macro-
replication and leads to a set of performance statistics

= =q k{ERMSE ( ); 1,2; 1,2, ..., 15}r
c k

( )
,q

For empirical evaluation, a total of R = 1000 independent EDS
has been generated by simulation experiments, and the average
ERMSE across the macro-replications are denoted as

∑= =

=

=
⎪

⎪

⎪

⎪

⎧
⎨
⎩

⎫
⎬
⎭

R
q

k

ERMSE( )
1

ERMSE ( ); 1,2;

1,2,...,15

c k
r

R
r

c k,
1

( )
,q q

and are summarized in Table 1. The statistic ERMSE( )c k,q

measures the expected overall deviation between Y(·) and Ŷ(·)
within the subset c k,q

. As shown in Table 1, in each subset of

check points c k,q
, the point estimates given by SKQ are much

more accurate than those provided by SK. For 22 out of the 30
check point subsets in Table 1, the average ERMSE given by
SKQ is less than half of that given by SK. Clearly, by
synergistically modeling multi-source data, SKQ leads to
statistical models of substantially improved quality.
Case 2: Modeling Multi-Source Dose−Response Data.

This case is derived from the dose−response study of TiO2
nanoparticles (NPs) after 3 days of exposure performed by
Porter et al.45 There is one quantitative factor x representing the
dose level, and x ∈ [0,20] μg. The one qualitative factor is
denoted as zwith three categories {c1,c2,c3}. Each category is used
to represent a different batch of animals. The vector of factors is
written as w = (x,z). The response of interest is BAL

(bronchoalveolar lavage) PMNs measured in the units of 103/
mouse.

Simulation Model. Simulation data that mimic the real
experiment data are generated using the following true dose−
response model

=

=

=

x c x

x c x

x c x

Y

Y

Y

( , ) 20 exp( /11)

( , ) 19.5 exp( /10.5)

( , ) 26 exp( /13.2)

1

2

3 (27)

and variance model

ε = =×x c x c qYVar[ ( , )] 0.2 ( , ) ; 1,2,3q q
2 2 0.6

(28)

For a certain category cq and at a dose level x0, a random
response y0 is simulated as

ε= + × =y x c x c qY Y( , ) 0.2 ( , ) ; 1,2,3q q0 0 0
0.6

(29)

where ϵ is a random error provided by a standard normal random
generator.47

This case is used to compare SKQ andMEM and is designed in
such a way that the two basic assumptions required by MEM are
met: (i) A nonlinear functional form can be easily identified and
employed to model the target dose−response curves. (ii) There
is a common variance structure (eq 28) across different data
sources. The third assumption made by MEM is the multivariate
normality of the model coefficient vector (see Review of Mixed
Effects Model, Supporting Information). According to eq 27, the
three true coefficient vectors in this case are (20,11)T,
(19.5,10.5)T, and (26,13.2)T; on the basis of which it is hardly
possible to judge whether the normality assumption holds or not.
This is quite typical of multi-source data.

Simulation-Based Sampling. As in Case 1, both EDS and
VDS are generated in this study for model estimation and

Table 1. Comparison of Estimation Results from SK and SKQ
for Case 1

ERMSE( )c k,q
ERMSE( )c k,q

subset of check
points SK SKQ

subset of check
points SK SKQ

c ,11
1.6110 1.5876 c ,12

5.1988 2.9626

c ,21
2.0351 1.4277 c ,22

4.1851 2.5193

c ,31
2.4907 1.2814 c ,32

3.4493 2.1025

c ,41
2.9825 1.1738 c ,41

2.8623 1.6950

c ,51
3.4742 1.1290 c ,52

2.4246 1.3363

c ,61
3.9355 1.1518 c ,62

2.1431 1.0676

c ,71
4.3396 1.2258 c ,72

1.9998 0.9487

c ,81
4.6247 1.3294 c ,82

1.9694 1.0057

c ,91
4.7185 1.4512 c ,92

2.0524 1.1582

c ,101
4.5792 1.5929 c ,102

2.2103 1.3311

c ,111
4.2379 1.7578 c ,112

2.3942 1.4815

c ,121
3.8478 1.9497 c ,122

2.5792 1.5902

c ,131
3.7447 2.1753 c ,132

2.7650 1.6665

c ,141
4.3577 2.4427 c ,142

2.9780 1.7489

c ,151
5.8143 2.7547 c ,152

3.2707 1.9007
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evaluation, respectively. To generate an EDS, the design as
shown in Table 2 is used; eight replications are carried out at 5
evenly spaced dose levels for each of the three categories. An
example EDS is given in Table S1 of An Estimation Data Set for
Case 2 of the Supporting Information.
Applying the Modeling Methods. The two alternative

information pooling methods, MEM and SKQ, were applied
on the EDS given in Table S1 of the Supporting Information.
To perform MEM, the common nonlinear functional form of

the dose−response curve for each of the three subpopulations is
assumed to be

α α= =x c x qY( , ) exp( / ); 1,2,3q c cq q,1 ,2 (30)

with αcq = (αcq,1,αcq,2) being the unknown parameters for
subpopulation cq (q = 1,2,3). The variance model is assumed to
follow

ε σ= =γx c x c qVar[ ( , )] Y( , ) ; 1,2,3q q
2 2

(31)

where σ and γ are unknown parameters common to different
subpopulations. Note that the assumed forms (eqs 30 and 31)
are the ones that the true models (eqs 27 and 28) fall into,
respectively; the adoption of functional forms (eqs 30 and 31) is
meant to allow MEM to achieve its ideal estimation results.
With the assumed forms (eqs 30 and 31), MEM is performed

on the EDS in Table S1 of the Supporting Information. The fitted
dose−response models are

̂ =

̂ =

̂ =

x c x

x c x

x c x

Y

Y

Y

( , ) 20.04 exp( /11.09)

( , ) 19.60 exp( /10.54)

( , ) 26.24 exp( /13.38)

1

2

3 (32)

The fitted variance model is

With the fitted MEM, the expected response can be estimated at
any dose level, and the BMD estimate can be obtained for a given
BMR. The confidence intervals can also be constructed for these
quantities of interest (see Review of Mixed Effects Model,
Supporting Information).
When applying SKQ to the same EDS (Table S1, Supporting

Information), the correlation (eq 6) is constructed as follows:
The exponential correlation function (eq 7) is used to model the
correlations between quantitative variables, and the MC
correlation function (eq 9) is used to model the correlations
across different levels of qualitative factors. Normalization of the
original data (Table S1, Supporting Information) was also
performed so that both the quantitative factors and responses
range over [0,1]. Applying the maximum likelihood estimation
procedure (see Estimation and Inference by SKQ) on the
normalized data leads to the fitted parameters for the SKQmodel
as displayed in Table 3.

With the fitted SKQ model, the expected response can be
estimated at any dose level (see Estimation and Inference by
SKQ), and the inverse BMD can be obtain numerically (see
Inverse Estimation and Inference); the confidence intervals
for these quantities can also be obtained accordingly. Note
that when utilizing the SKQ specified by Table 3 for the
estimation/inference, a simple conversion calculation is
needed to ensure that the estimates are given on the original
scale because those parameters are obtained from the
normalized data.

Comparison of the Two Modeling Methods. The modeling
results of MEM and SKQ are compared in terms of their
estimation/inference abilities for (I) the expected responses as
well as (II) the BMD values.

(I) Estimation/Inference of the Expected Response Ŷ(·).
From the one EDS given in Table S1 of the Supporting
Information, both MEM and SKQ were applied as described
earlier, and the estimation results for the two methods are
displayed in Figure 4. The circles denote the EDS and are plotted
in both Figure 4a and b. The dashed curves represent the
estimated expected responses, and the solid curves are the
lower and upper 95% CI curves for the true expected responses.
As shown in Figure 4, over the dose range, the widths of the
CIs (that is, the vertical distances between the lower and upper
CI curves) provided by SKQ are generally narrower than those
given by MEM; this pattern, which is graphically illustrated
for the one EDS plotted as circles in Figure 4, holds consistently
for all of the R = 1000 macro-replications carried out in this
study.
As explained in Case 1, one macro-replication refers to the

process of applying a method on one randomly generated EDS.
Using a modeling method (MEM or SKQ), R = 1000 macro-
replications lead to 1000 CIs of the true expected response Ŷ(·)
for any check point specified in terms of (x,cq). Hence, the
coverage probability of the CIs can be estimated as the
percentage of the 1000 CIs that include the true expectation
Ŷ(·). In our simulation study, Ŷ(·) is available from the simu-
lation model (eq 27) for the purpose of evaluating the CIs.
Ideally, among these 1000 CIs, the percentage of the CIs that
actually contain Ŷ(·) should be very close to 95%, the nominal
coverage level.
Table 4 presents the coverage probabilities of the 95% CIs

given by MEM and SKQ, respectively, based on each method’s
1000 macro-replications. The first two rows of Table 4 specify a
number of check points. The estimated coverage probabilities of
the MEMCIs are given in the row marked as “MEM’’, and are all
1.000 at the check points, which is much higher than the nominal
95%. The estimated coverage probabilities resulting from SKQ
are given in the row labeled as “SKQ’’ and are much closer to the
nominal percentage 95%.
Therefore, as shown in Figure 4 and Table 4, SKQ is able to

provide tighter CIs (i.e., CIs that are narrower and with more on-
target coverage probabilities) for the true expected responses,
while MEM overshoots the nominal coverage percentage by
providing wider CIs.

(II) Estimation/Inference of the BMD. Herein, the two
methods, MEM and SKQ, are compared in terms of their inverse
estimates for the BMD associated with a pre-specified BMR. For

Table 2. Design Points in EDS (estimation data set) for Case 2

x: dose 0 5 10 15 20 0 5 10 15 20 0 5 10 15 20
cq: subpopulation c1 c1 c1 c1 c1 c2 c2 c2 c2 c2 c3 c3 c3 c3 c3

Table 3. SKQ Parameters Estimated from Normalized Dose−
Response Data for Case 2

β̂0 δ̂2 θ̂1 p ̂ φ̂1 φ̂2 φ̂3

0.5426 0.1272 1.3588 1.9168 0.01 0.0144 0.022
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demonstration, the BMR is set as 42 × 103/mouse in this case.
(Recall that the response of interest is BAL PMNs measured in
the units of 103/mouse).
As already explained, R = 1000 macro-replications were

performed using each of the twomethods based on the 1000 data
sets {EDS(r);r = 1,2,...,R}. From the rth (r = 1,2,...,R) macro-
replication, a one-sided 95% CI was constructed for BMD(cq),
q = 1,2,3, following the bootstrapping resampling method
(Inverse Estimation and Inference); the lower bound of the one-
sided CI is called BMDL. The BMDLs estimated from the 1000
MEM macro-replications are denoted as

The BMDLs obtained from the 1000 SKQ macro-replications
are represented as

The true values for BMD(cq), q = 1,2,3, can be easily obtained for
BMR = 42 × 103 based on the simulation model (eq 27) and are
represented by the horizontal lines in Figure 5a−c corresponding
to the three subpopulations. Figure 5a is devoted to the
subpopulation c1, and the two box plots are generated based on
{ r = 1,2,...,1000} and { r =
1,2,...,1000}. Figure 5b and c are plotted for the other two
subpopulations in the same manner. Clearly, the BMDLs given by
SKQ are much closer to the true BMD than those provided by
MEM.
EachBMDLestimate in eqs 34 and 35 corresponds to a one-sided

95% CI: [BMDL,∞]. Table 5 compares the coverage probabilities
of the CIs obtained from MEM and SKQ. It is shown that the
coverage probabilities of SKQ are close to the nominal level 95%,
whereas MEM’s estimated probabilities are all 1.000. Therefore, as
shown in Figure 5 andTable 5, SKQ is able to givemore informative
CIs of the BMD compared to MEM.

Figure 4. Comparison of the dose−response fitting results from MEM and SKQ.

Table 4. Comparison of MEM and SKQ in Terms of CI Coverage Probabilities for the Expected Response Y(·)

subpopulation C1 subpopulation C2 subpopulation C3

x:dose 2.5 7.5 12.5 17.5 2.5 7.5 12.5 17.5 2.5 7.5 12.5 17.5
MEM 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
SKQ 0.957 0.966 0.974 0.933 0.952 0.955 0.970 0.926 0.955 0.970 0.964 0.968

Figure 5. Box plots for the BMDLs resulting from the two modeling methods.
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■ SUMMARY
A new semi-parametric statistical model, SKQ (stochastic kriging
with qualitative factors), has been developed in this work. SKQ is
the first kriging-based model able to take into account the three
types of variability steming from quantitative factors, qualitative
factors, and uncountable sources (random errors). Compared to
the parametric MEM (mixed effects modeling) method, the
closest regression-based counterpart, SKQ represents a more
general modeling approach and is free of the various restrictive
assumptions stipulated by MEM.
Through the empirical simulation studies, the modeling

efficiency of SKQ is demonstrated over the existing methods,
SK (standard stochastic kriging) and MEM. SKQ is able to pool
information across multiple data sources, accommodate general
data features, and provide more informative estimation/
inference from given data. For clarity and succinctness of the
presentation, the two cases for this paper were designed to
involve a relatively small number of data sources (subpopula-
tions). It is worth noting that when applying SKQ to data of a
large, as opposed to a small, number of sources, there is hardly
any additional theoretical or implementation hurdles. In our
empirical experience, SKQ’s modeling efficiency (information
pooling effects) is more pronounced with more sources of data.
All the SKQ-related algorithms are currently implemented in
MATLAB programs, which are available upon request from the
authors. To facilitate SKQ modeling and inference by biologists,
a VBA (Visual Basic for Application) Excel macro tool is under
development. The VBA tool intends to allow users who possess
the basic ability to use Excel to perform SKQ by interacting with
Excel spreadsheets and menus.
As a final note, the focus of this work is on efficient modeling of

given data. However, SKQ’s ability to provide more informative
statistical inference from limited data certainly opens oppor-
tunities for efficient design of experiments (DOE). Given some
subsets of data already collected and likely from different sources,
how should we efficiently design the next stage biological
experiments so that all the integrated data is most informative?
DOE is directly associated with model estimation and inference,
and in our ongoing research, a SKQ-based DOEmethod is under
development to achieve experimental efficiency.
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